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Notation

o A(s,t): year fraction between s and t. A(t;) means A(t;—1,t;).
e There are M payments on t1,ta,...,t;, ..., ty

o Discount factor D(t)

o Survival probability Q(t)

e Coupon rate C

o Notional N

e Default time 7

The Premium Leg

There are two terms of the premium leg, one is the regular coupon payment, and the other is
a single payment of the accrued premium in the event of default.

The regular coupon payments is just the risky discount of the future cash flow, which is,
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The accrued part involves the integration, and is,
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We could ignore the N and C' in the above formula, and define the risky PVO01 as,
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Overall, we have,

PVpremium = PVpPremiums only + PVaccrued interest = NC x RPVO01

Approximation 1: Halfway Default

To avoid the integration, we could assume that,

1. The default occurs halfway through the payment period, and the accrued premium is then
CA(ti—1,t;)/2. The probabilify of default during this payment period is the reduction
of survival probability Q(t;—1) — Q(t;).

2. The accrued interest is paid at the end of the payment period for simplicity.

That is, the integral term can be approximated by,
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Combined with the regular coupon payment, we have,
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Approximation 2: Constant Hazard and Interest Rate

Another approximation is to assume that the hazard rate and interest rate are constant, for
some t € [t;_1,t;], we have,
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Then the integral term for the accrued interest becomes,
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Denote a =r + A, and A =t; — t;_1, we can simplify the integral the above as,
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